
Elena V. Alymova 2, 3

Oleg E. Kudryavtsev 1, 3

Artificial neural networks and Wiener-
Hopf factorization*

1 Southern federal university
2 Russian Customs Academy, Rostov-on-Don

3 InWise Systems, LLC

Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis
Rostov-on-Don, 20 - 25 August, 2023

*supported by Russian Science Foundation grant № 23-21-00474



Pricing path-dependent options in exponential L´evy models still 
remains a mathematical and computational challenge.

Methods for pricing barrier options: drawbacks 
• Monte Carlo methods: slow
• Finite difference schemes: application entails a detailed 

analysis of the underlying L´evy process 
• Wiener-Hopf factorization methods: non trivial approximate 

formulas are needed in general case

The main goal 
Suggest a hybrid numerical method to price barrier options 
under L´evy processes. The main advantage of the approach is 
approximation of Wiener-Hopf factors with ANNs.

Historical background and main goal

2/14



General definitions

The characteristic exponent of L´evy process 

L´evy processes: a short reminder

3/14



The Wiener-Hopf factorization

The Wiener-Hopf factorization formula

4/14



Main ideas

An efficient approximation of the Wiener-Hopf factors in the exact 
formula for the solution is obtained by using artificial neural networks.

5/14



Explicit formulas for approximations of ±

6/14



We have:
𝑝1, 𝑝2,…, 𝑝𝑀−1 | 𝑝𝑖 ≥ 0, σ𝑖=1

𝑀−1𝑝𝑖 = 1,𝑀 = 2𝑁, 𝑁 ∈ ℕ

We need:
𝑞1, 𝑞2,…, 𝑞𝑀/2 | 𝑞𝑖 ≥ 0, 0 ≤ 𝑞𝑖 < 𝑞𝑖+1 < 1,σ𝑖=1

𝑀/2
𝑞𝑖 = 1

𝑟1, 𝑟2,…, 𝑟𝑀/2 | 𝑟𝑖 ≥ 0, 1 ≥ 𝑟𝑖+1 > 𝑟𝑖 > 0,σ𝑖=1
𝑀/2

𝑟𝑖 = 1

𝑞 𝑥 = 𝑞1 + 𝑞2𝑥 +⋯+ 𝑞𝑀/2𝑥
𝑀
2−1

𝑟 𝑥 = 𝑟1 + 𝑟2𝑥 +⋯+ 𝑟𝑀/2𝑥
𝑀
2−1

𝑝 𝑥 = 𝑝1 + 𝑝2𝑥 +⋯+ 𝑝𝑀−1𝑥
𝑀−2

𝑝 𝑥 = 𝑟 𝑥 𝑞(𝑥)

The first task

7/14



Let M = 4
с

𝑥
+ 𝑏 + 𝑎𝑥2 =

𝛼1
𝑥
+ 𝛼2 𝛽1 + 𝛽2𝑥 ,

𝛼𝑖 , 𝛽𝑖 𝑖 = 1, 2 − 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
𝛼2 = 1 − 𝛼1
𝛽1 = 1 − 𝛽2

The first task

Multiply and divide by X:

𝑐 + 𝑏𝑥 + 𝑎𝑥2

𝑥
=

𝛼1 + 𝛼2𝑥 𝛽1 + 𝛽2𝑥

𝑥
𝑐 + 𝑏𝑥 + 𝑎𝑥2= 𝛼1 + 𝛼2𝑥 𝛽1 + 𝛽2𝑥

8/14



Train / valid data generation

9/14



Activation functions:
• Sigmoid (input, hidden 

layers)
• Softplus (output layer)

ANN Model

10/14



• Standard MSE function
• Custom loss function

Loss function

11/14



Standard loss function (MSE)
– Quick training – 75 epochs
– Evaluation results: 

– Average time prediction: 0.0420 seconds

Custom loss function 
– Training – 170 epochs
– Evaluation results: 

– Average time prediction: 0.0450 seconds

Model training results

12/14



Model predicted values
Standard loss function (MSE)

Custom loss function 

13/14



Make loss function independent on true values:
a=[alpha1 1-alpha1 0 0]
b=[0 beta1 1-beta1 0]
c=[A B C 0]
Delta = FFT(a) * FFT(b) – FFT(c)

Use M >= 3

Further research

14/14


