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• Analyze BTC/USD historical stock price data.
• Build NFF and LSTM neural network  for price trend 

prediction. 
• Transform initial data set to choose best data form 

for price trend prediction.
• Evaluate the applicability of the developed models.

Research goals
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Initial data set

3/20



A moving average (MA) is a widely used indicator in technical 
analysis that helps smooth out price action by filtering out the 

“noise” from random short-term price fluctuations

Data Discovery methods in RapidMiner: 
Moving Average
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When the price rises above MA - a buy signal occurs, 
when the price galls below MA - sell signal occurs

Data Discovery methods in RapidMiner: 
Moving Average
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Windowing creates examples from a multivariate value series data set by 
windowing the input data. 

Financial time series modeling: feedforward 
neural network (FNN)
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Label – training value of <CLOSE>, explained by other fields

“By days” data input
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Build FNN model
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The process describes FNN model and uses training / test data to form 
prediction

Training and applying FNN model
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FNN model predicts the price direction on day close

“By days Data” FFN applying results
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10.03.18 -1 1

11.03.18 1 1

12.03.18 -1 1

13.03.18 -1 1

14.03.18 -1 1

15.03.18 -1 1

16.03.18 1 1

17.03.18 1 0

18.03.18 1 0
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FNN model applaying on full data
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Full Data FFN applying results
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84958 1 0

84959 1 1

84960 1 0

84961 -1 1

84962 -1 1

84963 1 1

84964 -1 1

84965 1 0

84966 1 1

12/20



Logarithmic return formula: Logarithmic rate of return:

Logarithmic return calculation
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Let FIELDS = [OPEN, HIGH, LOW , CLOSE, VOL] 
Then:

𝐹𝐼𝐸𝐿𝐷𝑆[𝑗]2 = 𝐿𝑁
𝐹𝐼𝐸𝐿𝐷𝑆[𝑗]𝑖2
𝐹𝐼𝐸𝐿𝐷𝑆[𝑗]𝑖1

𝐹𝐼𝐸𝐿𝐷𝑆[𝑗]1 = 𝐿𝑁
𝐹𝐼𝐸𝐿𝐷𝑆[𝑗]𝑖3
𝐹𝐼𝐸𝐿𝐷𝑆[𝑗]𝑖2

𝐹𝐼𝐸𝐿𝐷𝑆[𝑗] = 𝐿𝑁
𝐹𝐼𝐸𝐿𝐷𝑆[𝑗]𝑖4
𝐹𝐼𝐸𝐿𝐷𝑆[𝑗]𝑖3

Where:
i – time periods,
j – fields index.

Extended input data set
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Total of records: 114442

Extended input data set
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Target fields:

𝑇𝐴𝑅𝐺𝐸𝑇𝑖 = 𝐿𝑁
𝐶𝐿𝑂𝑆𝐸𝑖5
𝑂𝑃𝐸𝑁𝑖1

𝐼𝑁𝐷𝐼𝐶𝐴𝑇𝑂𝑅𝑖 = ቊ
1, 𝑇𝐴𝑅𝐺𝐸𝑇𝑖 > 0
0, 𝑇𝐴𝑅𝐺𝐸𝑇𝑖 ≤ 0

Where:
i – time periods.

Extended input data set
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Layer Dense_1 activation function – ReLU (Rectified Linear Unit)
Layer Dense_2 activation function – Sigmoid

Log Return modeling: Long short-term memory 
(LSTM)
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Log Return modeling: Long short-term memory 
(LSTM)
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* Hardware configuration:
Intel® Core™ i7-3630QM CPU @ 2.49Ghz
RAM 16.0 Gb

Results comparison

Model type Data size Prediction accuracy Training time*

FNN (days as time 
period)

80 50% 24 min

FNN (minutes as time 
period)

114442 64% 4h 12 min

LSTM (Log return 
indicator)

114442 82% 23h 18 min
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