On risk evaluation for cryptocurrency markets using an LSTM artificial neural network.

Vasily Rodochenko

Southern Federal University

april 2019

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Contents

- 2 Cryptocurrency market structure
- On using LSTM networks

・ロト・雪ト・雪ト・雪・・白・

april 2019

2 / 24

Cryptocurrencies

Over the past few years, "cryptocurrency" has become a well-used term in financial circles and news headlines.

General notes

- We make no difference between cryptocurrencies and "normal" stock prices.
- Cryptocurrency dynamics is unique in a sense that we can see high volatility and high liquidity at the same time.
- Arbitrage opportunities on cryptocurrency markets are not easy to exploit.

Problem

• We try to predict the probability of crossing a certain barrier using some historical information.

A (10) < A (10) < A (10) </p>

Contents

2 Cryptocurrency market structure

On using LSTM networks

4 References

V. Rodochenko

< □ > < 同 > < 回 > < 回 > < 回 >

Academic interest

Engine	Publications (papers) found
Google Scholar	11 900
Researchgate	837
Springer link	722
Ssrn	454
ScienceDirect	268
BlockchainLibrary	190
ArXiv	189
Econbiz	167
Jstor	76

Table: Number of papers with "cryptocurrency" keyword.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What are cryptocurrencies

General notes

- We make no difference between cryptocurrencies and "normal" stock prices.
- Cryptocurrency dynamics is unique in a sense that we can see high volatility and high liquidity at the same time.
- Arbitrage opportunities on cryptocurrency markets are not easy to exploit.

How to acquire the data?

Sources

- Coinmarketcap.
- Poloniex API
- Kaggle datasets
- Custom data collectors

E ▶ .

What top cryptocurrencies are (Coinmarketcap)

Position	Name	calitalization	avg price
1	Bitcoin (BTC)	\$93,334,631,518	\$5,285.70
2	Ethereum (ETH)	\$17,848,982,526	\$168.78
3	Ripple (XRP)	\$13,436,161,868	\$0.320132
4	Bitcoin Cash	\$5,031,673,483	\$283.62
5	EOS	\$4,684,726,701	\$5.17
6	Litecoin	\$4,658,710,175	\$75.83
7	Binance	\$3,412,916,505	\$24.17
8	Tether	\$2,602,196,817	\$1.01
9	Stellar	\$2,157,410,101	\$0.111416
10	Cardano	\$1,875,473,273	\$0.072336
11	TRON	\$1,643,117,501	\$0.024641
12	Monero	\$1,157,920,100	\$68.38
13	Dash	\$1,055,288,634	\$120.43
14	Bitcoin SV	\$1,008,523,963	\$56.85
15	Tezos	\$873,571,780	\$1.32

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Top cryptocurrencies shares

Position	Name	Share	Cumulative share
1	Bitcoin Bitcoin	52.78%	52.78%
2	Ethereum Ethereum	10.09%	62.88%
3	XRP XRP	07.60%	70.48%
4	Bitcoin Cash	02.85%	73.32%
5	EOS EOS	02.65%	75.97%
6	Litecoin	02.63%	78.61%
7	Binance	01.93%	80.54%
8	Tether	01.47%	82.01%
9	Stellar	01.22%	83.23%
10	Cardano	01.06%	84.29%
11	TRON	00.93%	85.22%
12	Monero	00.65%	85.87%
13	Dash	00.60%	86.47%
14	Bitcoin SV	00.57%	87.04%
15	Tezos	00.49%	87.53%

< □ > < □ > < □ > < □ > < □ >

Cryptocurrency market vs MOEX

Total Russian stock market capitalization (MOEX): \$645,233,992,728 Total cryptocurrency market cap: \$176,822,984,800 (27.4%)

Cryptocurrency market summary

More than 50% of total the market capitalization is focused in Bitcoin

(不良) (不良)

Contents

2 Cryptocurrency market structure

V. Rodochenko

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LSTM networks

The idea of LSTM

- Primitive neural networks started thinking from scratch.
- To add a concept of memory, recurrent networks emerged.
- To make RNN learn faster, LSTMs were invented.

Descriptions and samples

- Hochreiter S. and Schmidhuber J. Long short-term memory, Neural Computation. 1997.
- Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PLoS ONE. 2019.
- https://github.com/jaungiers/Multidimensional-LSTM-BitCoin-Time-Series

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

USDT/BTC price predictions

(日)

Data preparation scheme

Data prepatation

- Consider logreturns
- 2 The length of a period is 1 day, ending at 23:59:59 GMT.
- Consider the first available "open" price for an asset as a starting price and then use a volume-weighted average price for every next time step.
- For the very first moment observed, set a logarithm of return to zero, whereas for the other open daily prices we compared it to the last available open price.
- x_i = log(S_i/S₀), i = 1, 2, ..., where S₀ is the open price of a period and S_i is a volume-weighted average for each of the following 5-min periods.
- On the beginning of a new trading day renew S₀, reset the counter i and continue the process.

< □ > < □ > < □ > < □ > < □ >

Bitcoin dynamics analysis

Data prepatation 2

- Prepare a set of barriers H_k = dh · k for k = -30,..., -1 and k = 1,..., 30, with dh = 0.01. So we obtained 30 barriers on each side from 0, which are multiples of 0.01, i.e. 1%: 0.01, 0.02,..., 0.3 and -0.01, -0.02,..., -0.3. A number of barriers and dh were chosen experimentally so as to reflect the distribution features "well enough".
- Mark the barrier as H_k "crossed" at moment i if the respective logreturn x_i is greater or equal then H_k if k > 0 (or less of equal than H_k for k < 0).</p>
- Sollect a statistics on "crossing" events for each barrier.

< □ > < □ > < □ > < □ > < □ > < □ >

Histogram sample

Image: A matrix

< ⊒ >

On CGMY model

CGMY model

CGMY (The fine structure of asset returns: An empirical investigation. 2002) model has 4 parameters, namely:

- *ν* > 0,
- λ₋ > 0,
- $\lambda_+ > \lambda_-,$
- 0 < c < 2

The characteristic exponent of the associated Lévy process is (for $\nu \neq 0, 1, \nu < 2$)as follows:

$$\phi(\xi) = -i\mu\xi + c\Gamma(-\nu) \bigg[(-\lambda)_{-}^{\nu} - (-\lambda_{-} - i\xi)^{\nu} + \lambda_{+}^{\nu} - (\lambda_{+} + i\xi)^{\nu} \bigg]$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Model calibration (CGMY)

- We calculated prices of a first touch digital option.
- The price of this contingent claim with a payoff equals to 1 can be interpreted as a probability of crossing a barrier, for each of H_k under consideration. We used a Wiener-Hopf-factorization based pricing method to evaluate option prices.
- We used Nelder-Mead (NM) algorithm, which started from a predefined set of points and placed additional linear penalties (as the computationally fastest ones), to restrict the set of parameter values it should stop on.
- The penalty implementation added the value $|b_n p_n|$, n = 1, ..., 4 where b_n is a boundary condition and p_n is a respective parameter value guess to error function.

イロト イポト イヨト イヨト

Log error

Let sp_k be the statistical probability k-th barrier and mp_k be price of a first-touch digital option for the same barrier (also acting as probability). Then error function e could be calculated as:

$$e=\sum_{k}d_{k},$$

where

$$d_{k} = \begin{cases} 0, mp_{k} = sp_{k} = 0\\ |mp_{k}|\log(|mp_{k}|), sp_{k} = 0\\ |sp_{k}|\log(|sp_{k}|), mp_{k} = 0\\ |mp_{k} - sp_{k}|\log(mp_{k}/sp_{k}), otherwise \end{cases}$$

We also used a standard deviation of the prices generated by the CGMY / LSTM model from their statistical equivalents.

Learning (LSTM)

- We used a cross-validation technique with 3 sets, which does not intersect
- Sequences of historical probabilities and bitcoin data (OHLC + volume) were used as features.
- Additional penalty was added to prevent replicating the last data available.
- Last *n* samples were used to predict (n + 1) st

.

Summary

Results obtained

- The network overfits easily (cross validation + more data)
- The network likes memorizing the very last value (penalty)
- In comparison to CGMY model, the network currently is at best 19% more accurate

Future researches

- Hyperparameter setup
- Activation (dropout) functions analysis

< ∃ > <

THANK YOU FOR ATTENTION!

< □ > < □ > < □ > < □ > < □ >

Contents

- 2 Cryptocurrency market structure
- On using LSTM networks

V. Rodochenko

< □ > < 同 > < 回 > < 回 > < 回 >

References

1	Hochreiter S. and Schmidhuber J. Long short-term memory, Neural Computation. 1997. Vol. 9, No. 8, pp. 1735–1780, DOI:10.1162/neco.1997.9.8.1735.
2	eq:Kim T. and Kim HY. Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PLoS ONE. 2019. Vol. 14, No. 2, DOI: https://doi.org/10.1371/journal.pone.0212320
3	Kudryavtsev, O. and Grechko, S. Statistical methods for calibrating models of cryptocurrencies prices. Accounting and Statistics. 2018. Vol. 4, No. 52, pp. 67–76. ISSN 194-0874.
4	Nelder, John A.; R. Mead. A simplex method for function minimization. 1965. Computer Journal. 7: 308–313. doi:10.1093/comjnl/7.4.308.
5	Nelson D. M.Q., Pereira A. C.M. Stock market's price movement prediction with LSTM neural networks. International Joint Conference on Neural Networks (IJCNN). 2017. DOI: 10.1109/IJCNN.2017.7966019
6	P. Carr, H. Geman, D. Madan, and M. Yor. The fine structure of asset returns: An empirical investigation. 2002. The Journal of Business, 75(2):305–333.
0	Serrano, W. (2018). Fintech Model: The Random Neural Network with Genetic Algorithm. Procedia Computer Science, 126, 537–546.
8	Troster, V., Tiwari, A., Shahbaz, M., & Macedo, D. (2018), Bitcoin returns and risk: A general GARCH and GAS analysis. Finance Research Letters. doi: 10.1016/j.frl.2018.09.014

The research was supported by the RFBR (project 18-01-00910)

★ Ξ →