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A diffusion equation

A 3-dimensional partial differential equation for function u = u(x , t),
where x = (x1, x2) ∈ R2, t ∈ R:

General form (Øksendal)

( ∂
∂t

+ L
)
u = 0, L =

∑
i

µi(x)
∂

∂xi
+

1

2

∑
i ,j

(σσT )ij(x)
∂2

∂xi∂xj
,

i = 1, 2, j = 1, 2; functions µ(x) = (µ1(x), µ2(x)) and

σ(x) =

(
σ11(x) σ12(x)
σ21(x) σ22(x)

)
satisfies conditions of Theorem 5.2.1. µ : R2 → R2 — drift coefficient
σ : R2 → R2 × R2 (or 1

2
(σσT )) — diffusion coefficient
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With a suitable initial and boundary conditions, the Kolmogorov
backward equation can be solved (Øksendal; Eström (2010)).

There are no general analytical solutions.

Numerical methods are based on the exact form of µi(x) and
σ(x).

Let T > 0 be a time moment, H > 0 – an absorbing barrier,
g(x) : R→ R>0 – some suitable function, which decays rapidly on
infinity.

Terminal and boundary conditions
( ∂
∂t

+ L)u = 0, x1 > H , t < T ,

u(x1, x2,T ) = g(x1), x1 > H ,

u(x1, x2, t) = 0, x1 6 H , t 6 T .
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A diffusion equation

The solution to a diffusion equation in a given domain can be
interpreted as an expectation (Dynkin, Feinman, Katz).

The idea was later generalized for the case of Lévy processes.
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Ito diffusions - general

Two correlated diffusions{
dX1(t) = µ1dt + σ11dB1(t) + σ12dB2(t),

dX2(t) = µ2dt + σ21dB1(t) + σ22dB2(t).

B1(t),B2(t) are Brownian motions (Wiener processes)
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An example from mathematical finance
Define const. κV > 0, θV > 0, σV > 0; ρ ∈ (−1, 1), ρ̂ =

√
1− ρ2.

Denote X1(t) as St and X2(t) as Vt . Assume µ1 = 0,
µ2 = κV (θV − Vt) and

σ =

(
ρ
√
VtSt ρ̂

√
VtSt

σV
√
Vt 0

)
,

Processes: {
dSt =

√
VtSt(ρdB1(t) + ρ̂dB2(t)),

dVt = κV (θV − Vt)dt + σV
√
VtdB1(t).

(1)

An infinitesimal operator L:

L =
1

2
S2v

∂2

∂S2
+ ρσV vS

∂2

∂S∂v
+

1

2
σ2
V v

∂2

∂v 2
+ κV (θV − v)

∂

∂v
. (2)
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The problem in u(S, v, t) terms



(
∂
∂t

+ 1
2
S2v ∂2

∂S2 + ρσV vS
∂2

∂S∂v
+

+1
2
σ2
V v

∂2

∂v2 + κV (θV − v) ∂
∂v

)
u = 0, S > H , v > 0, t < T ,

u(S , v ,T ) = g(S), S > H , v > 0,

u(S , v , t) = 0, S 6 H , v > 0, t 6 T .

The solution (exist. & uniq. — Cont, Tankov (2004)):

u(S , v , 0) = E [1(T ,+∞)(TH) · g(ST )|S0 = S ,V0 = v ], t = 0. (3)
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The substitution (Zanette, Briani et al. (2017))

The structure:

Yt = ln

(
St

H

)
− ρ

σV
Vt , St = H exp

(
Yt +

ρ

σV
Vt

)
.

The system in its terms:{
dYt = µY (Vt)dt + ρ̂

√
VtdB2(t),

dVt = µV (Vt)dt + σV
√
VtdB1(t),

where

µY (v) = −1

2
v − ρ

σV
κV (θV − v)

and
µV (v) = κV (θV − v).
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With g(y) = g(Hey+
ρ
σ
v ):

The problem in terms of f (y , v , t) := u
(
H exp(y + ρ

σV
v), v , t

)


(
∂
∂t

+ 1
2
ρ̂2v ∂2

∂y2 +1
2
σ2
V v

∂
∂v2 + µY (v) ∂

∂y
+ µV (v) ∂

∂v

)
f = 0,

y + ρ
σV
v > 0, v > 0, t < T ,

f (y , v ,T ) = g(y), y + ρ
σV
v > 0, v > 0,

f (y , v , t) = 0, y + ρ
σV
v 6 0, v > 0, t 6 T .

TH is as the earliest time the process Yt + ρ
σ
Vt enters (−∞, 0]:

TH = inf
t>0
{t : Yt +

ρ

σV
Vt 6 0}.

The expectation

f (y , v , 0) = E y ,v [1(T ,+∞)(TH)g(YT )].
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Carr randomization

Let N ∈ N, ∆t = T/N , q > 0, Tq ∼ Exp(∆t−1).
We calculate a sequence of

fn(y , v) ≈ f (y , v ,
n∑

j=1

T j
q), n = 0, 1, . . . ,N ;

where f0(y , v) ≈ f (y , v , 0); fN(y , v) = g(y),
and T j

q ∼ Exp(∆t−1) is a sequence of ind. random variables.

Expectations

fn(y) = E y ,v

[
1T n+1

q ,+∞)

(
inf
t>0
{t : YT n+1

q
+

ρ

σV
VT n+1

q
6 0}

)
·

· fn+1(YT n+1
q
,VT n+1

q
)

]
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The Markov chain

The recombining binomial tree:

Vn,k =
(√

V0 +
σV
2

(2k−n)
√

∆t
)2 ·1(0,+∞)

(√
V0 +

σV
2

(2k−n)
√

∆t
)
,

where n = 0, 1, . . . ,N , k = 0, 1, . . . , n.

Transitions

From (n, k) to either (n + 1, ku) or (n + 1, kd).
With probabilities pu and pd .
The values ku, kd and pu, pd are based Vt , like in (Briani, Zanette at
al (2013)).
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Expectations

Recurrent calculation w.r.t the Markov chain:

fn,k(y) = 1(0,+∞)

(
y +

ρ

σV
Vn,k

)
·
(
puf

u
n,k(y) + pd f

d
n,k(y)

)
,

where

f un,k(y) = E y
[
1(0,+∞)(Y

n+1,ku
Tq

+
ρ

σV
Vn+1,ku) · fn+1(Y n+1,ku

Tq
,Vn+1,ku)

]
,

and Y n,k
Tq

is a value of YTq from the system, when VTq = Vn,k ;

the value of f dn,k(y) is calculated analogously.
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Expected Present Value (S. Levendorskǐi) operator

EqF (x) = qE x

[ ∫ +∞

0

e−qtF (Xt)dt

]
= E

[
F (x + XTq)

]
,

where Xt is an Ito diffusion.

Sup and inf processes with the EPVs

Xt = sup
06s6t

Xt , Xt = inf
06s6t

Xt ,

E+q F (x) = qE x [

∫ +∞

0

e−qtF (X t)dt] = E [F (x + XTq ],

E−q F (x) = qE x [

∫ +∞

0

e−qtF (X t)dt] = E [F (x + XTq
)].
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EPV in the problem considered

Using the property X t
d∼ Xt − X t , one can quite easily obtain:

The solution in terms of the EPV operators

f un,k(y) = qE−q
(
1(0,+∞)(y +

ρ

σV
Vn+1,ku) · E+q fn+1,ku(y)

)
,

and use an analogous formula for f dn,k(y).

EPV operators as convolutions

EqF (x) =

∫ +∞

−∞
F (x +u)Pq(du), E±q F (x) =

∫ +∞

−∞
F (x +u)P±q (du),

where P+
q (−∞, 0) = 0, P−q (0,+∞) = 0.
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Wiener-Hopf factorization for a symbol of a PDO

If Xt is a Lévy process, and its char. exp. is a function ψ(ξ), defined
by the Levy-Khintchine formula, then the char. functions for the
distributions P±q (du) are φ±(ξ), such that:

φ+(ξ) · φ−(ξ) = q(q + ψ(ξ))−1. (4)

There are also exist constants ω− < 0 < ω+ such that φ+(ξ) admits
an analytical cont. into half-plane Im ξ > ω− (and φ−(ξ) — into
Im ξ < ω+.

PDO representation and symbols

q(q + ψ(ξ))−1 is a symbol of Eq
φ±(ξ) are symbols of E±q .
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The characteristic function of Y n,k
t , t < Tq, is

ψ(ξ) =
σ2
n,k

2
ξ2 − iγn,kξ,

where σn,k = ρ̂
√

Vn,k , γn,k = µY (Vn,k). For this case:

φ+(ξ) =
β+
q

β+
q − iξ

, φ−(ξ) =
−β−q

−β−q + iξ
,

where

β+
q =

−γn,k +
√
γ2n,k + 2σ2

n,kq

σ2
n,k

, β−q =
−γn,k −

√
γ2n,k + 2σ2

n,kq

σ2
n,k

.

The respective distributions:

P−q (du) = −β−q e−β
−
q u1(−∞,0)(u)du,P+

q (du) = β+
q e
−β+

q u1(0,+∞)(u)du

.
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PDO representation (O n log(n) operations via FFT):

ε±q u(x) = (2π)−1
∫ +∞

−∞
e ixξφ±q (ξ)û(ξ)dξ.

Let us define a reasonably dense grid yk = y ∗ + yh, k = 0, 1, ...M ,
where M ∈ N is large, denote Fn(y) := f un,k(y), Fn+1(y) := f un+1,ku

(y)
and consider the equation:

Convolutions calculation

E+Fn+1(yk) =

∫ +∞

0

β+
q e
−β+

q uFn+1(yk + u)du. (5)
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E+, step 1

As g(y) decays on infinity, lim
y→+∞

Fn(y) = lim
y→+∞

g(y) = 0, we restrict

the integration area with y ∗ > 0. If yk + u < y ∗, then u < y ∗ − yk .
We get:

E+Fn+1(yk) ≈
∫ y∗−yk

0

β+
q e
−β+

q uFn+1(yk + u)du.

Make a substitution: w = u + yk :

E+Fn+1(yk) ≈ eβ
+
q yk

∫ y∗

yk

β+
q e
−β+

q wFn+1(w)dw .
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E+, step 2
From an indicator: for yk − h < − ρ

σV
Vn+1,ku , Fn+1(yk − h) = 0.

E+Fn+1(yk−1) ≈ e−β
+
q hE+Fn+1(yk)+

e−β
+
q h

∫ yk

yk−h
β+
q e
−β+

q (w−yk )Fn+1(w)dw .

Trapezoid approximation for the integral part:

h

2
· β+

q

(
Fn+1(yk−1) + e−β

+
q hFn+1(yk)

)

Simpson approximation example (E+Fn+1(yk−2) used):

h

3
· β+

q

(
Fn+1(yk−2) + 4e−β

+
q hFn+1(yk−1) + e−2β

+
q hFn+1(yk)

)
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E−, step 1

Let us put z = ρ
σV
Vn+1,ku and consider:

qE−
(
1(0,+∞)(yk + z) · E+Fn+1(yk)

)
=

= q

∫ 0

−(z+yk )

−β−q e−β
−
q u · E+Fn+1(u + yk)du

The integral form for qE− in yk :

w :=u+yk= qeβ
−
q yk

∫ yk

−z
−β−q e−β

−
q wE+Fn+1(w)dw .

V. Rodochenko Voronezh, december 2018 25 / 35



E−, step 2
Then, for yk+1 = yk + h, using the same reasoning we get:

qE−
(
1(0,+∞)(yk+1 + z) · E+Fn+1(yk+1)

)
=

= qeβ
−
q (yk+h)

(
eβ

−
q hE−1(−∞,0)(yk + z)+

+

∫ yk+h

yk

− β−q e−β
−
q wE+Fn+1(w)dw

)
Trapezoid approximation

h

2
· (−β−q )

(
E+Fn+1(yk+1) + eβ

−
q hE+Fn+1(yk)

)
Simpson approximation (E−Fn+1(yk+2) used)

h

3
· (−β−q )

(
e2β

−
q hE+Fn+1(yk+2) + eβ

−
q hE+Fn+1(yk+1) + E+Fn+1(yk)

)
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Summary

Using the procedure above to solve the arising 1-dimensional
problems, we obtain an approximate solution for the Kolmogorov
backward equation.

The scheme presented is an iterative method for calculating
integrals, where already calculated values of E±Fn+1(yk) are used
to obtain values for the neighboring yk .

The main advantage

We only need O(n) operations to calculate the integrals
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THANK YOU FOR ATTENTION!
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