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A diffusion equation

A 3-dimensional partial differential equation for function u = u(x, t),
where x = (x;,x) € R?, t € R:

General form (@ksendal)

9 o 1 0
(E+L)u:0, L:z’_:”i(x)a_)q"_ﬁ%:(aaT)ij(X)M’

i=1,2, j=1,2; functions p(x) = (p1(x), p2(x)) and
O'(X) _ <0’11(X) O'12(X)>

0'21(X) O'22(X)

satisfies conditions of Theorem 5.2.1. ;1 : R> — R? — drift coefficient
o:R? = R?x R? (or 1(00 ")) — diffusion coefficient
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e With a suitable initial and boundary conditions, the Kolmogorov
backward equation can be solved (@ksendal; Estrom (2010)).

e There are no general analytical solutions.
e Numerical methods are based on the exact form of 1;(x) and
o(x).
Let T > 0 be a time moment, H > 0 — an absorbing barrier,
g(x) : R — R?% — some suitable function, which decays rapidly on
infinity.
Terminal and boundary conditions

(& +L)u=0, xx>H t<T,

u(xy, x2, T) = g(x1), x, > H,
u(xy, xp, t) =0, xx <H,t<T.
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A diffusion equation

e The solution to a diffusion equation in a given domain can be
interpreted as an expectation (Dynkin, Feinman, Katz).

e The idea was later generalized for the case of Lévy processes.
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Ito diffusions - general

Two correlated diffusions

Xm(t) = ppdt + 011d81(t) = 0'120'82(1'),
dXz(t) = ,uzdt + 0'21d81(t) + O'zgde(t).

e Bi(t), Bx(t) are Brownian motions (Wiener processes)
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An example from mathematical finance

Define const. ky > 0,0y >0, oy >0; p€ (—-1,1), p=+/1 — p%
Denote Xi(t) as S; and Xy(t) as V;. Assume u; =0,

Ho2 = Ii\/(@\/ — Vt) and

p\/VtSt P\/Vtst
ovv'Ve 0 ’

Processes:

th = Hv(ev — Vt)dt == O'V\/thBl(t).

An infinitesimal operator L:

1., 02 7 1, o 9
L_—S Vﬁ"’pg\/ 5058 + Uv 82+/€v(9v—v)av (2)
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The problem in u(S, v, t) terms

(
( 152 352 + pUVVSasav

+3 avvaz—l—/iv(ev—v);))u—o S>Hv>0t<T,

u(S,v, T)=g(S5), S>H,v>0,
L u(S, v, t) =0, S<H,v>0,t<T.

The solution (exist. & uniq. — Cont, Tankov (2004)):

u(S,v,0) = E[L(r 1o)(Th) - 8(ST)ISo = S, Vo =], t=0. (3),
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The substitution (Zanette, Briani et al. (2017))

The structure:
Y, = In<5t> ~ Ly, s = Hexp(yt+£vt).
H oy Oy

The system in its terms:

dY, = py(Ve)de + pv/VidBa(t),
th = ,U/V(Vt)dt i UV\/thBl(t),

where 1
wy(v) = —5V - %Hv(ev —v)

and
pv(v) = kv (by — v).
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With g(y) = g(He*+"):

The problem in terms of f(y,v,t) = u(H exp(y + B%V)> v, t)

2
(2 +1vE +iod v + uv(VE + (V)2 )F =0,
y+£v>0,v>0,t< T,
fly,v,T)=g(y), y+Lv>0v>0,
f(y,v,t) =0, y+2L2v<0v>0t<T.

Th is as the earliest time the process Y; + £V, enters (—oo, 0]:

: p
Ty = gg{t: Y: + EVt < 0}.

The expectation
f(_y’ v, O) = Ey’v[l(T,—i-oo)( TH)g( YT)]
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Carr randomization

Let NeN, At=T/N, g >0, T, ~ Exp(At™!).
We calculate a sequence of

f,,(y,v)%f(y,v,z ), n=0,1,...,N;
j=1
where fo(y, v) ~ f(y,v,0);  fu(y,v) = &(y),

and Té ~ Exp(At~!) is a sequence of ind. random variables.

Expectations

v e p
fn(y) = Ey’ 1—,—(171+17+OO)(]|?|;'£{1: . Y—,—;+1 + EVT:JA < 0})

. fn+1( YT(I77+1, T:H)
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The Markov chain

The recombining binomial tree:

(o2 2 o
Vik =(V Vot -2k = VAL L0100 (v/Vo + = (2k — n)VAE),

where n=20,1,... N, k=0,1,... n

Transitions
From (n, k) to either (n+1,k,) or (n+ 1, ky).
With probabilities p, and py.

The values k,, kg and p,, pg are based V4, like in (Briani, Zanette at
al (2013)).
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Expectations

Recurrent calculation w.r.t the Markov chain:
P u
foic(¥) = L(0,400) (¥ + - Vo) - (Pufil(v) + pafile(v)),

where

faky) = B [1(07+o<>)(r%:1’ku - % Votik,) - fn+1(Y¥:Lku7 Vit1k)]

and Y#;k is a value of Y7, from the system, when V7, =V, ;

the value of £, (y) is calculated analogously.
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Expected Present Value (S. Levendorskii) operator

E,F(x) = qE* { /O o e—qu(Xt)dt] = E[F(x + X7,)],

where X; is an lto diffusion.

Sup and inf processes with the EPVs

Xe = sup Xe, Xe= inf X,

0<s<t 0<s<t

S:IFF(X) = qE"[/OJroo e F(X,)dt] = E[F(x +77q],

£F(x) = qE"| /0 " e E(X,)dt] = E[F(x + Xl

q
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EPV in the problem considered

Using the property X; 4 X: — X, one can quite easily obtain:

The solution in terms of the EPV operators

fok(y) = q&; <1(o,+oo)(y 4 U—pv Votik,) - gjfn+1,ku()/))a

d
and use an analogous formula for £7,(y).

EPV operators as convolutions

+oo

2 ) = /_+OOF(x+u)Pq(du), E2F(x) = / F(x+ u)P(du),

o0 —00

where P (—0c0,0) =0, P, (0,+00) = 0.
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Wiener-Hopf factorization for a symbol of a PDO

If X is a Lévy process, and its char. exp. is a function (&), defined
by the Levy-Khintchine formula, then the char. functions for the
distributions P (du) are ¢=(¢), such that:

¢*(§) - ¢7(§) = alq + (&) (4)

There are also exist constants w_ < 0 < w; such that ¢*(§) admits
an analytical cont. into half-plane Im ¢ > w_ (and ¢~ (£) — into
Imé <wy.

PDO representation and symbols

q(g+ ¥(£))~! is a symbol of &,
¢*(&) are symbols of £-.
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The characteristic function of Y;"* t < T, is
2

Un,k 2 .
w(ﬁ) = Tf — 1Y€,
where 0,k = pr/ Vi, Yok = toy(Vak). For this case:

Q) = (=
By —i&’ —By +i€’
where
e —Vnk + \/’Y,%,k + 203,;((7 b —Vnk — \/75,/( + 2‘7,21,kq
i Ui,k ’ i U%,k '

The respective distributions:

P, (du) = —B; e 7“1 (s 0)(u)du, P (du) = 5:*9_6;"1(0,%0)(“)0'“
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PDO representation (O nlog(n) operations via FFT):
+o0

e£u(x) = (2m)~ / e 4 (€)8(E) de.

(e.o]

.M,

Let us define a reasonably dense grid y, = y* + yh, k 1,.
fn 1,ky (y)

where M € N is large, denote F,(y) := £, (y), Fara(y):
and consider the equation:

0,

Convolutions calculation
—+o0o

ETFa(yk) = B;Le_ﬁg”F,,H(yk + u)du. (5)
0
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ET step 1

infinity, lim F, = | =0, trict
As g(y) decays on infinity, Jim (y) y_')Toog()’) we restric

the integration area with y* > 0. If yx +u < y*, then u < y* — yi.
We get:

*

Y =Yk
E4Friaye) ~ / B eyl + u)du
0

Make a substitution: w = u + y:

*

y
EYF1(yk) = eﬁgyk/ B:e_B;WF,,H(W)dW.

Yk

V. Rodochenko
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ET, step 2
From an indicator: for y, — h < —;"7 Vi1 Fosi(yx —h) = 0.

EYFria(yi) m e P "ETFoa (vi)+

Yk

_f/t _ At _

e th/ hﬁ:e Ba (w yk)F,,_;,_l(W)dW.
Yie—

Trapezoid approximation for the integral part:

h _
5" 5:{ (Fn+1()/k1) +efab n+1(yk))

Simpson approximation example (€ F, 1(yx_2) used):

h _ _
3 By (Fn+1(yk—2) +ae HPF (i) + e 2ﬁ‘¢th+1(}’k))

v
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E , step 1
Let us put z = % n+1,k, and consider:
06 (Tl + )£ Fra()) =

0
= CI/ —B e P ENFpa(u+ yi)du
—(z+yx)

The integral form for g€~ in y;:

— _ Yk _
wi=Utyk qeﬁ" }’k/ _5;e—ﬁq W8+Fn+1(w)dw.
4
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E~, step 2

Then, for yxi1 = yx + h, using the same reasoning we get:
qc” (1(0,+oo)(}’k+1 +z) - 5+Fn+1()/k+1)) =

— qu;(Yk‘f'h) (eﬁqhg_l(oo,O)(_yk + Z)+

yk+h _
+/ - ﬁ;e‘ﬁq W5+F,,+1(W)dw)

Yk
Trapezoid approximation
h

= (-87) (5+Fn+1(}’k+1) + eﬁ"_h5+Fn+1(}’k)>

Simpson approximation (€~ Fni1(yk+2) used)

w| >

(=64) <e25qh5+Fn+1(Yk+2) + P Y Fo (yigr) + 8+Fn+1(yk)>
Voronesh december 201826 135



Summary

e Using the procedure above to solve the arising 1-dimensional
problems, we obtain an approximate solution for the Kolmogorov

backward equation.

@ The scheme presented is an iterative method for calculating
integrals, where already calculated values of EXF,,1(yx) are used
to obtain values for the neighboring y;.

The main advantage
We only need O(n) operations to calculate the integrals J
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