A Simplified Wiener-Hopf factorization method for pricing double barrier options under Lévy processes*

Kudryavtsev Oleg
* supported by Russian Science Foundation grant № 23-21-00474

Southern Federal University, koe@sfedu.ru
InWise Systtems, LLC
International Workshop on Operator Theory and Harmonic Analysis, Rostov-on-Don

$$
28 \text { April } 2023
$$

Outline

(1) The main goal
(2) Lévy processes: a short reminder
(3) Wiener-Hopf factorization
(4) The problem setup and general steps
(5) A Simplified Wiener-Hopf factorization method

Outline

(1) The main goal

(2) Lévy processes: a short reminder

3 Wiener-Hopf factorization

4 The problem setup and general steps

(5) A Simplified Wiener-Hopf factorization method

Pricing options under Lévy processes

Option valuation under Lévy processes has been dealt with by a host of researchers.
However, pricing path-dependent options in exponential Lévy models still remains a computational challenge.

Path-dependent options: barrier options

A double barrier option is a contract which pays the specified amount $G\left(S_{T}\right)$ at the terminal date T, provided during the lifetime of the contract, the price of the stock does not cross specified constant barriers D from above and U from below. When at least one of the barriers is crossed, the option expires worthless or the option owner is entitled to some rebate.
If $U=+\infty$, we obtain a down-and-out single barrier option.
If $D=-\infty$, we deal with an up-and-out single barrier option.

Historical background

Methods for pricing barrier options: drawbacks

- Monte Carlo methods: slow
- Finite difference schemes: application entails a detailed analysis of the underlying Lévy process
- Wiener-Hopf factorization methods:

Single barriers: non trivial approximate formulas are needed in general case Double barriers: application involves an iterative solution to the pair of coupled WH-integral equations or matrix factorization

The main goal

The goal of the current paper is to suggest a new, easy, and effective method to price double barrier options under pure non-Gaussian Lévy processes with jumps of unbounded variation. The main advantage of the approach is applying semi-explicit Wiener-Hopf factorization formulas

Outline

(1) The main goal

(2) Lévy processes: a short reminder

(3) Wiener-Hopf factorization

4. The problem setup and general steps

(5) A Simplified Wiener-Hopf factorization method

Lévy processes: a short reminder

General definitions

A Lévy process is a stochastically continuous process with stationary independent increments (for general definitions, see e.g. Sato (1999)). A Lévy process can be completely specified by its characteristic exponent, ψ, definable from the equality $E\left[e^{i \xi X(t)}\right]=e^{-t \psi(\xi)}$.

The characteristic exponent of a pure non-Gaussian Lévy process
The characteristic exponent is given by the Lévy-Khintchine formula:

$$
\psi(\xi)=-i \mu \xi+\int_{-\infty}^{+\infty}\left(1-e^{i \xi y}+i \xi y 1_{|y| \leq 1}\right) F(d y),
$$

where the Lévy measure $F(d y)$ satisfies $\int_{R \backslash\{0\}} \min \left\{1, y^{2}\right\} F(d y)<+\infty$. If $F(d x)=\pi(x) d x, \pi(x)$ - Lévy density.

Examples of Lévy processes, $F(R)=\infty$

A Lévy process of unbounded variation
The condition $\int_{R \backslash\{0\}} \min \{1,|y|\} F(d y)<+\infty$ does not hold.
Tempered stable Lévy processes (TSL) of unbounded variation

$$
\begin{gathered}
\psi(\xi)=-i \mu \xi+c_{+} \Gamma\left(-\nu_{+}\right)\left[\lambda_{+}^{\nu_{+}}-\left(\lambda_{+}+i \xi\right)^{\nu_{+}}\right]+ \\
c_{-} \Gamma\left(-\nu_{-}\right)\left[\left(-\lambda_{-}\right)^{\nu_{-}}-\left(-\lambda_{-}-i \xi\right)^{\nu_{-}},\right.
\end{gathered}
$$

where $\nu_{+}, \nu_{-} \in(1,2), c_{+}, c_{-}>0, \mu \in \mathrm{R}$, and $\lambda_{-}<-1<0<\lambda_{+}$. If $c_{-}=c_{+}=c$ and $\nu_{-}=\nu_{+}=\nu$, then we obtain a KoBoL (CGMY) model.

$$
\pi(x)=c_{+} e^{\lambda_{+} x}|x|^{-\nu_{+}-1} 1_{\{x<0\}}+c_{-} e^{\lambda_{-} x}|x|^{-\nu_{-}-1} 1_{\{x>0\}} .
$$

In the CGMY parametrization: $C=c, Y=\nu, G=\lambda_{+}, M=-\lambda_{-}$.

Outline

(1) The main goal

(2) Lévy processes: a short reminder

(3) Wiener-Hopf factorization

44 The problem setup and general steps

(5) A Simplified Wiener-Hopf factorization method

Definition

Direct Fourier transform $\mathcal{F}_{x \rightarrow \xi}$:

$$
\hat{g}(\xi)=\int_{-\infty}^{+\infty} e^{-i x \xi} g(x) d x
$$

Inverse Fourier transform $\mathcal{F}_{\xi \rightarrow x}^{-1}$:

$$
g(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i x \xi} \hat{g}(\xi) d \xi
$$

Some properties

- $\mathcal{F}_{x \rightarrow \xi} \mathcal{F}_{\xi \rightarrow x}^{-1}=I$ and $\mathcal{F}_{\xi \rightarrow x}^{-1} \mathcal{F}_{x \rightarrow \xi}=I$
- $\mathcal{F}_{x \rightarrow \xi}(g * f)=\overline{\mathcal{F}_{x \rightarrow \xi}(g)} \cdot \mathcal{F}_{x \rightarrow \xi}(f)=\mathcal{F}_{x \rightarrow \xi}(g) \cdot \overline{\mathcal{F}_{x \rightarrow \xi}(f)}$, where $(g * f)(x)=\int_{-\infty}^{+\infty} g(x+y) f(y) d y=\int_{-\infty}^{+\infty} g(z) f(z-x) d z$.

Wiener-Hopf factorization for $E\left[e^{i \xi X_{T_{q}}}\right]$

Let $q>0, X_{t}$ be a Lévy process with characteristic exponent $\psi(\xi)$, $T_{q} \sim \operatorname{Exp} q, \bar{X}_{t}=\sup _{0 \leqslant s \leqslant t} X_{s}$ and $\underline{X}_{t}=\inf _{0 \leqslant s \leqslant t} X_{s}$ - supremum and infimum processes.

$$
\phi_{q}^{+}(\xi)=E\left[e^{i \xi \bar{X}_{T_{q}}}\right], \quad \phi_{q}^{-}(\xi)=E\left[e^{i \xi X_{T_{q}}}\right], \quad \frac{q}{q+\psi(\xi)}=\phi_{q}^{+}(\xi) \phi_{q}^{-}(\xi)
$$

Wiener-Hopf factorization for operators: $\mathcal{E}=\mathcal{E}^{+} \mathcal{E}^{-}=\mathcal{E}^{-} \mathcal{E}^{+}$

$$
\begin{gathered}
\mathcal{E}_{q} g(x)=E\left[g\left(x+X_{T_{q}}\right)\right]=\int_{-\infty}^{+\infty} g(x+y) P(y) d y \\
\mathcal{E}_{q}^{+} g(x)=E\left[g\left(x+\bar{X}_{T_{q}}\right)\right]=\int_{-\infty}^{+\infty} g(x+y) P_{+}(y) d y \\
\mathcal{E}_{q}^{-} g(x)=E\left[g\left(x+\underline{X}_{T_{q}}\right)\right]=\int_{-\infty}^{+\infty} g(x+y) P_{-}(y)(d y)
\end{gathered}
$$

where $P(y), P_{ \pm}(y)$ are probability densities with $P_{ \pm}(y)=0, \forall \pm y<0$.

Pseudo-differential operator (PDO)

A PDO $A=a(D)$ with the symbol $a(\xi)$ acts as follows $\left(D=-i \frac{d}{d x}\right)$:

$$
\operatorname{Ag}(x)=(2 \pi)^{-1} \int_{-\infty}^{+\infty} e^{i x \xi} a(\xi) \hat{g}(\xi) d \xi
$$

In short, $\operatorname{Ag}(x)=\mathcal{F}_{\xi \rightarrow x}^{-1} a(\xi) \mathcal{F}_{x \rightarrow \xi} g(x)$
\mathcal{E} and $\mathcal{E}^{ \pm}$as PDO

$$
\begin{gathered}
\mathcal{E}_{q} g(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i x \xi} q(q+\psi(\xi))^{-1} \hat{g}(\xi) d \xi \\
\mathcal{E}_{q}^{ \pm} g(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i x \xi} \phi_{q}^{ \pm}(\xi) \hat{g}(\xi) d \xi
\end{gathered}
$$

WHF in an operator form: $\mathcal{E}=\mathcal{E}^{+} \mathcal{E}^{-}=\mathcal{E}^{-} \mathcal{E}^{+}$.

Useful facts and relations
Let X_{t}-Lévy process, and $T_{q} \sim \operatorname{Exp} q$. Then

- $\underline{X}_{T_{q}}$ and $X_{T_{q}}-\underline{X}_{T_{q}}$ - independent;
- $\bar{X}_{T_{q}}$ and $X_{T_{q}}-\underline{X}_{T_{q}}$ - identically distributed.

A semi-explicit factorization: $F((0,+\infty))=0$
Denote by $\beta_{q}^{+}=\sup \{\beta \geqslant 0: q+\psi(-i \beta)=0\}$, and we obtain:

$$
\phi_{q}^{+}(\xi)=\frac{\beta_{q}^{+}}{\beta_{q}^{+}-i \xi}, \quad \phi_{q}^{-}(\xi)=\frac{q\left(\beta_{q}^{+}-i \xi\right)}{(q+\psi(\xi)) \beta_{q}^{+}} .
$$

A semi-explicit factorization: $F((-\infty, 0))=0$
Denote by $\beta_{q}^{-}=\inf \{\beta \leqslant 0: q+\psi(-i \beta)=0\}$, and we obtain:

$$
\phi_{q}^{-}(\xi)=\frac{-\beta_{q}^{-}}{-\beta_{q}^{-}+i \xi}, \quad \phi_{q}^{-}(\xi)=\frac{q\left(-\beta_{q}^{-}+i \xi\right)}{(q+\psi(\xi))\left(-\beta_{q}^{-}\right)} .
$$

Explicit WHF: Gaussian Lévy process

Let $X_{t}=\gamma_{0} t+\sigma W_{t}$, then

$$
\psi(\xi)=\frac{\sigma^{2}}{2} \xi^{2}-i \gamma \xi
$$

For $q>0$,the equation $q+\psi(\xi)=0$ has two roots $-i \beta_{-}$and $-i \beta_{+}$, where $\beta_{-}<0$ and $\beta_{+}>0$.

The function $q(q+\psi(\xi))^{-1}$ admits WHF with

$$
\phi_{q}^{+}(\xi)=\frac{\beta_{+}}{\beta_{+}-i \xi}, \quad \phi_{q}^{-}(\xi)=\frac{-\beta_{-}}{-\beta_{-}+i \xi}
$$

The functions ϕ_{q}^{-}and ϕ_{q}^{+}are chf of exponential distributions on negative ans positive half-lines, respectively:

$$
P_{q}^{-}(d x)=-\beta_{-} e^{-\beta_{-x}} 1_{(-\infty ; 0]}(x) d x, P_{q}^{+}(d x)=\beta_{+} e^{-\beta_{+x}} 1_{[0 ;+\infty)}(x) d x
$$

Explicit WHF: Kou model

In Kou model

$$
\psi(\xi)=\frac{\sigma^{2}}{2} \xi^{2}-i \mu \xi+\frac{i c_{+} \xi}{\lambda_{+}+i \xi}+\frac{i c_{-} \xi}{\lambda_{-}+i \xi} .
$$

For $q>0$,the equation $q+\psi(\xi)=0$ has four roots $-i \beta_{1}^{-},-i \beta_{0}^{-},-i \beta_{0}^{+}$ and β_{1}^{+}, where $\beta_{1}^{-}<\lambda_{-}<\beta_{0}^{-}<0<\beta_{0}^{+}<\lambda_{+}<\beta_{1}^{+}$.

The function $q(q+\psi(\xi))^{-1}$ admits WHF with

$$
\begin{aligned}
& \phi_{q}^{+}(\xi)=\frac{\lambda_{+}-i \xi}{\lambda_{+}} \prod_{j=0,1} \frac{\beta_{j}^{+}}{\beta_{j}^{+}-i \xi}, \\
& \phi_{q}^{-}(\xi)=\frac{-\lambda_{-}+i \xi}{-\lambda_{-}} \prod_{j=0,1} \frac{-\beta_{j}^{-}}{-\beta_{j}^{-}+i \xi} .
\end{aligned}
$$

Approximate Wiener-Hopf factorization

Formulas for WH-factors

For a wide class of Lévy processes X_{t}, the following integral representations for $\phi_{q}^{+}(\xi), \phi_{q}^{-}(\xi)$ are valid (see details in Boyarchenko and Levendorskii (2002)):

$$
\begin{aligned}
& \phi_{q}^{+}(\xi)=\exp \left[(2 \pi i)^{-1} \int_{-\infty+i \omega_{-}}^{+\infty+i \omega_{-}} \frac{\xi \ln (q+\psi(\eta))}{\eta(\xi-\eta)} d \eta\right] \\
& \phi_{q}^{-}(\xi)=\exp \left[-(2 \pi i)^{-1} \int_{-\infty+i \omega_{+}}^{+\infty+i \omega_{+}} \frac{\xi \ln (q+\psi(\eta))}{\eta(\xi-\eta)} d \eta\right]
\end{aligned}
$$

where $\omega_{-}<0<\omega_{+}$with ω_{-}, ω_{+}depending on the Lévy process X_{t} parameters.

The direct computation of $\phi_{q}^{+}(\xi)$ and $\phi_{q}^{-}(\xi)$ require $O(N M)$ operations, where N is a number of ξ-points and M is a number of points for numerical integration

Outline

(1) The main goal

(2) Lévy processes: a short reminder

(3) Wiener-Hopf factorization

(4) The problem setup and general steps

(5) A Simplified Wiener-Hopf factorization method

The problem for double barrier options

Let T, K, D, U be the maturity, strike, the lower barrier, and the upper barrier, and the stock price $S_{t}=D e^{X_{t}}$ be an exponential Lévy process under a chosen risk-neutral measure $(\psi(-i)+r=0)$ which has no diffusion component ($\sigma=0$) and only jumps of finite variation.

Let us introduce $h=\ln U / D$. We consider options, whose payoff at maturity date T depends on $\left(X_{T}, \underline{X}_{T}, \bar{X}_{T}\right)$.

Consider

$$
V(T, x)=E^{x}\left[e^{-r T} 1_{\underline{X}_{T}>0} 1_{\bar{X}_{T}<h} G\left(X_{T}\right)\right],
$$

where time 0 is the beginning of a period under consideration, T - the final date,
0 and h are the absorbing barriers, $G\left(X_{T}\right)$ - the payoff function at time T provided the barriers has't been crossed.

Time randomization and Laplace transform

$$
\begin{aligned}
& \hat{V}(q, x)=\int_{0}^{+\infty} e^{-q t} E^{x}\left[e^{-r t} G\left(X_{t}\right) 1_{\underline{X}_{t}>0} 1{\overline{\bar{x}_{t}<h}}\right] d t \\
& =E^{x} \quad\left[\int_{0}^{+\infty} e^{-(q+r) t} G\left(X_{t}\right) 1_{\underline{x}_{t}>0} 1_{\bar{x}_{t}<h} d t\right] .
\end{aligned}
$$

$$
\begin{aligned}
& v_{n}(q, x):=\frac{(-1)^{n-1} q^{n}}{(n-1)!} \partial_{q}^{n-1} \hat{V}(q, x) \\
= & \int_{0}^{+\infty} \frac{q^{n} t^{n-1}}{(n-1)!} e^{-(q+r) t} E^{x}\left[G\left(X_{t}\right) 1_{\underline{X}_{t}>0} 1{\overline{X_{t}}<h}\right] d t \\
= & E^{\times}\left[\frac{G\left(X_{T(n, q+r)}\right)}{(1+r / q)^{n}} 1_{\underline{X}_{T(n, q+r)}>0} 1_{\bar{X}_{T(n, q+r)}<h}\right],
\end{aligned}
$$

$\mathrm{T}(n, q)$ is a Gamma random variable.

Numerical Laplace transform inversion

Post-Widder formula

If $f(\tau)$ is a function of a nonnegative real variable τ and the Laplace transform $\tilde{f}(\lambda)=\int_{0}^{\infty} e^{-\lambda \tau} f(\tau) d \tau$ is known, the approximate PostWidder formula for $f(\tau)$ can be written as

$$
f(\tau)=\lim _{N \rightarrow \infty} f_{N}(\tau) ; \quad f_{N}(\tau):=\frac{(-1)^{N-1}}{(N-1)!}\left(\frac{N}{\tau}\right)^{N} \tilde{f}^{(N-1)}\left(\frac{N}{\tau}\right),
$$

where $\tilde{f}^{(N)}(\lambda)-N$ th derivative of the Laplace transform \tilde{f} at λ.
Set $q=T / N$. The convergence $v_{N}(T / N, x)$ to $V(T, x)$ as $N \rightarrow \infty$ is of order N^{-1}.

Single barrier options in Lévy models, Post-Widder formula Kudryavtsev, O., "An efficient numerical method to solve a special class of integro-differential equations relating to the Levy models" // Mathematical Models and Computer Simulations, 2011, V.3., N.6.

Iterative scheme

Taking into account that $\mathrm{T}(n, q+r) \sim \mathrm{T}(n-1, q+r)+T_{q+r}$, we can represent $X_{T(n, q+r)}=X_{T_{q+r}}+\ldots+X_{T_{q+r}^{n}}$, where $T_{q+r}^{1}, \ldots, T_{q+r}^{n}$ are consecutive time increments being independent exponentially distributed random variables with the parameter $q+r$.

Using the relations

$$
\begin{aligned}
& 1_{\underline{X}_{\mathrm{T}(n, q+r)}>0}=1_{\underline{X}_{\mathrm{T}(n-1, q+r)}>0} 1_{X_{\mathrm{T}(n-1, q+r)}+\underline{X}_{T_{q+r}^{n}}>0,} \\
& 1_{\bar{X}_{\mathrm{T}(n, q+r)}<h}=1_{\bar{X}_{\mathrm{T}(n-1, q+r)}<h} 1_{X_{\mathrm{T}(n-1, q+r)}+\bar{X}_{T_{q+r}^{n}}<h,},
\end{aligned}
$$

we obtain that for $n=1,2, \ldots$

$$
v_{n}(q, x)=E^{\times}\left[\frac{v_{n-1}\left(q, X_{T_{q+r}}\right)}{(1+r / q)} 1_{\underline{X}_{T_{q+r}}>0} 1_{\bar{X}_{T_{q+r}}<h}\right],
$$

where $v_{0}(q, x)=G(x) 1_{(0, h)}(x)$.

Convergence

Theorem 1

Let N be a suffciently large natural number. Set $q=T / N, v_{0}(q, x)=$ $G(x) 1_{(0, h)}(x)$, and for $n=1,2, \ldots$ define

$$
v_{n}(q, x)=E^{\times}\left[\frac{v_{n-1}\left(q, X_{T_{q+r}}\right)}{(1+r / q)} 1_{\underline{X}_{T_{q+r}}>0} 1_{\bar{X}_{T_{q+r}<}<h}\right],
$$

where the random time $T_{q+r} \sim \operatorname{Exp}(q+r)$.
For a fixed $x, v_{N}(T / N, x)$ converges to $V(T, x)$ as $N \rightarrow \infty$.

The state-of-art implementation of the Wiener-Hopf method

Pricing single barrier options

One needs to factorize $(q+r) /(q+r+\psi(\xi))$.Then one can calculate the sequence $v_{n}(q, x)$ with $q=N / T$ and $h=+\infty$ as follows: for $n=1, \ldots, N$

$$
\begin{aligned}
v_{n}(q, x) & =\frac{1}{(1+r / q)} \cdot E^{\times}\left[v_{n-1}\left(q, \underline{X}_{T_{q+r}}+\bar{X}_{T_{q+r}}\right) 1_{\underline{X}_{T_{q+r}}>0}\right] \\
& =\frac{1}{(1+r / q)} \mathcal{E}_{q+r}^{-} 1_{(0,+\infty)} \mathcal{E}_{q+r}^{+} v_{n-1}(q, x) .
\end{aligned}
$$

Unfortunately, in the case of double barrier options (with $h<+\infty$), such formulas are not available for general Lévy models. Instead one needs to factorize the following matrix:

$$
\left(\begin{array}{cc}
\exp (i \xi h) & 0 \\
(q+r) /(q+r+\psi(\xi)) & \exp (-i \xi h)
\end{array}\right)
$$

Outline

(1) The main goal

(2) Lévy processes: a short reminder

(3) Wiener-Hopf factorization

4 The problem setup and general steps

(5) A Simplified Wiener-Hopf factorization method

Splitting

The key idea behind the method is to represent the process X_{t} as the sum of spectrally positive jumps X_{t}^{+}with a non-negative drift and spectrally negative jumps X_{t}^{-}with a non-positive drift: $X_{t}=X_{t}^{+}+X_{t}^{-}$.

The first step

- Denote by $\psi_{+}(\xi)$ and $\psi_{-}(\xi)$ the characteristic exponents of X_{t}^{+}and X_{t}^{-}, respectively.
- If the drift $\mu \geqslant 0$:
$\psi_{+}(\xi)=-i \mu \xi+\int_{0}^{+\infty}\left(1-e^{i \xi y}+i \xi y 1_{|y| \leq 1}\right) F(d y)$,
$\psi_{-}(\xi)=\int_{-\infty}^{0}\left(1-e^{i \xi y}+i \xi y 1_{|y| \leq 1}\right) F(d y)$.
- If the drift $\mu<0$:

$$
\begin{aligned}
& \psi_{+}(\xi)=\int_{0}^{+\infty}\left(1-e^{i \xi y}+i \xi y 1_{|y| \leq 1}\right) F(d y) \\
& \psi_{-}(\xi)=-i \mu \xi+\int_{-\infty}^{0}\left(1-e^{i \xi y}+i \xi y 1_{|y| \leq 1}\right) F(d y) .
\end{aligned}
$$

Approximation. Key ideas

Introduce $X_{t}^{+, i} \sim X_{t}^{+},=1, \ldots, 4$ and $X_{t}^{-, j} \sim X_{t}^{-}, j=5,6$.
It follows that $X_{t} \sim Y_{t}=\left(\underline{X}_{t / 2}^{+, 1}+\bar{X}_{t / 2}^{+, 2}+\bar{X}_{t}^{-, 5}+\underline{X}_{t}^{-, 6}+\underline{X}_{t / 2}^{+, 3}+\bar{X}_{t / 2}^{+, 4}\right)$.

Let a natural number N be sufficiently large and $q=N / T$. We approximate $X_{T_{q+r}}$ with $Y^{T_{q+r}}$, since the randomized time T_{q+r} converges in quadratic mean to 0 as $N \rightarrow+\infty$.

Theorem 2

Let $q>0$ be sufficiently large. Then for a fixed $\xi \in \mathrm{R}$

$$
E\left[e^{i \xi X\left(T_{q}\right)}\right]-E\left[e^{i \xi Y\left(T_{q}\right)}\right] \sim O\left(q^{-2}\right) \text { as } q \rightarrow+\infty .
$$

Iterative scheme

Theorem 3

Let a natural number N be sufficiently large and $q=N / T$. Introduce the following operators:

$$
\begin{aligned}
& \mathcal{E}_{+}^{+} u(x)=E\left[u\left(x+\bar{X}_{T_{q+r} / 2}^{+}\right)\right], \mathcal{E}_{-}^{+} u(x)=E\left[u\left(x+\bar{X}_{T_{q+r}}^{-}\right)\right] \\
& \mathcal{E}_{+}^{-} u(x)=E\left[u\left(x+\underline{X}_{T_{q+r} / 2}^{+}\right)\right], \mathcal{E}_{-}^{-} u(x)=E\left[u\left(x+\underline{X}_{T_{q+r}}^{-}\right)\right] .
\end{aligned}
$$

One may approximate $v_{n}(q, x)$ as follows:

$$
\begin{aligned}
v_{n}(q, x) & =\frac{1_{(0, h)}(x)}{(1+r / q)} \mathcal{E}_{+}^{-} 1_{(0, h)} \mathcal{E}_{+}^{+} \mathcal{E}_{-}^{+} 1_{(0, h)} \mathcal{E}_{-}^{-} \mathcal{E}_{+}^{-} 1_{(0, h)} \mathcal{E}_{+}^{+} v_{n-1}(q, x) \\
& +O\left(q^{-2}\right) \text { as } q \rightarrow+\infty
\end{aligned}
$$

Approximate Wiener-Hopf factorization

Notice that $X_{T_{q+r}}^{-}$admits a semi-explicit factorization. Set

$$
\phi_{+}(\xi)=E\left[e^{i \xi \bar{X}_{T_{q+r}}}\right], \phi_{-}(\xi)=E\left[e^{i \xi X_{T_{q+r}}}\right] .
$$

$$
\phi_{-}^{+}(\xi)=\frac{\beta_{q+r}^{+}}{\beta_{q+r}^{+}-i \xi}, \phi_{-}^{-}(\xi)=\frac{(q+r)\left(\beta_{q+r}^{+}-i \xi\right)}{\beta_{q+r}^{+}\left(q+r+\psi_{-}(\xi)\right)} .
$$

Now, we can rewrite the operators \mathcal{E}_{-}^{+}and \mathcal{E}_{-}^{-}as follows

$$
\begin{aligned}
& \mathcal{E}_{-}^{+} u(x)=E\left[u\left(x+\bar{X}_{T_{q+r}}^{-}\right)\right]=(2 \pi)^{-1} \int_{-\infty}^{+\infty} e^{i x \xi} \phi_{-}^{+}(\xi) \hat{u}(\xi) d \xi \\
& \mathcal{E}_{-}^{-} u(x)=E\left[u\left(x+\underline{X}_{T_{q+r}}^{-}\right)\right]=(2 \pi)^{-1} \int_{-\infty}^{+\infty} e^{i x \xi} \phi_{-}^{-}(\xi) \hat{u}(\xi) d \xi .
\end{aligned}
$$

Approximate Wiener-Hopf factorization

Notice that $X_{T_{q+r} / 2}^{+}$admits a semi-explicit factorization. Set

$$
\phi_{+}^{+}(\xi)=E\left[e^{i \xi \bar{X}_{T_{q+r} / 2}^{+}}\right], \phi_{+}^{-}(\xi)=E\left[e^{i \xi X_{T_{q+r} / 2}^{+}}\right] .
$$

$$
\phi_{+}(\xi)=\frac{2(q+r)\left(-\beta_{q+r}^{-}+i \xi\right)}{\left(2(q+r)+\psi_{+}(\xi)\right)\left(-\beta_{q+r}^{-}\right)}, \phi_{-}(\xi)=\frac{-\beta_{q+r}^{-}}{-\beta_{q+r}^{-}+i \xi} .
$$

Now, we can rewrite the operators \mathcal{E}_{+}^{+}and \mathcal{E}_{+}^{-}as follows

$$
\begin{aligned}
& \mathcal{E}_{+}^{+} u(x)=E\left[u\left(x+\bar{X}_{T_{q+r} / 2}^{+}\right)\right]=(2 \pi)^{-1} \int_{-\infty}^{+\infty} e^{i \times \xi} \phi_{+}^{+}(\xi) \hat{u}(\xi) d \xi \\
& \mathcal{E}_{+}^{-} u(x)=E\left[u\left(x+\underline{X}_{T_{q+r} / 2}^{+}\right)\right]=(2 \pi)^{-1} \int_{-\infty}^{+\infty} e^{i x \xi} \phi_{+}^{-}(\xi) \hat{u}(\xi) d \xi .
\end{aligned}
$$

Conclusion

- We suggest a new approach for pricing path-dependent options with a payoff depending on the infimum and supremum of a Lévy process at expiry
- The Wiener-Hopf operators can be numerically implemented by using FFT.
- The SWHF-method is rather simpler to implement into program in comparison with existing numerical methods.
- The calculating knock-and-out put prices for general Lévy models with jumps of bounded variation takes a fraction of a second. We expect the same performance in the unbounded variation case.
- The method suggested makes it easy to implement such a sophisticated tool as the matrix Wiener-Hopf factorization for general Lévy models with jumps of unbounded variation.

