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Historical background

Option valuation under Lévy processes has been dealt with by a host
of researchers.

However, the pricing options in exponential Lévy models still remains
a mathematical and computational challenge.

Methods for pricing exotic options: drawbacks
e Monte Carlo methods: slow

e Finite difference schemes: application entails a detailed analysis
of the underlying Lévy process

o Wiener-Hopf methods: the most efficient in the case of processes
with rational characteristic exponents

v

The main goal

To suggest a new Monte Carlo method for a wide class of Lévy
processes.

v
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Lévy processes: a short reminder

General definitions

A Lévy process is a stochastically continuous process with stationary
independent increments (for general definitions, see e.g. Sato (1999)).
A Lévy process can be completely specified by its characteristic
exponent, v, definable from the equality E[e’X(*)] = e~t¥(9),

The characteristic exponent of Lévy process

The characteristic exponent is given by the Lévy-Khintchine formula:

_0_2 2__ 7 e _ ally 3
V() = 5 & —inE+ 3 (1— €% +ityl),<1)F(dy),

where o2 is the variance of the Gaussian component, and the Lévy
measure F(dy) satisfies [g, o, min{1, y?}F(dy) < +oo.

.
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Examples of Lévy processes

Tempered stable Lévy processes (TSL)

V(&) = —ipd + e T(—v)[NF — (A + i) ]+
e T(=v)l(=A-)" = (=A== i&)"],
where v, ,v_ € (0,2),vy,v_#1,¢c;,c. >0, p€R, and
A <-1<0< Ay lfc.=cy=candv_=v; =v, then we

obtain a KoBoL (CGMY) model.
In the CGMY parametrization C=c, Y =v, G=\,, M= —-)_.

Kou model

T ic & ic_§
w(s)-;s _’“5+A++/5+A_+ig’

where c;,c. >0, p R, and A\_ < -1 <0< \,.

v
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Wiener-Hopf factorization

Let g > 0, X; be a Lévy process with characteristic exponent v(¢)

Tq ~ Expq, X; = supgesc; Xs and X, = infocscr Xs — supremum and
infimum processes.

o1 (€) = E[e¥5T],  ¢7(€) = E[€**™], q%m = ¢ (&)dg (©).

Introduce the following operators:
+o0o
Eag() = L[ qe"g(X)dt] = E”lg(Xr,)
0
+o0 _ _
aanzﬁv ge~"g(X,)ot] = E*(g(Xr,)]

ijwﬂ Ddt] = Elg(X )]
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€ and £F as PDO
£ _ 1 e ix§ —1a d
() =5 [ eala+u(e) e
+o0o

ORI GEGY

—00

WHF in an operator form: £ =E1E~ =E7ET.

&y and ij as convolution operators

Operators &, and ij admit the following interpretation:

+oo

cgt)= [ senPId, Erg)= [ sbetn)Play

where P(y), P+(y) are probability densities with
Pi(y) =0, V4y<O0.

v
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Useful facts and relations

Let X; — Lévy process, and T, ~ Exp q. Then
o X7, and X7, — X, — independent;
° )_<Tq and X7, — Xr, - identically distributed.

Functions ¢ (€) — characteristic functions of distributions P=(dy),
satisfying
suppP™ C [0, +00), suppP~ C (—o0, 0].

Symbols of the EPV-operators
9
q+¥(¢)

0 = e, b5(6) = e e

— e—lfxgqelfx,
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Wiener-Hopf factorization

o In Kuznetsov (2010), new classes of Lévy processes with explicit
WH-factorization were suggested,;

o In Eberlein et al. (2011) derive expressions for the analytically
extended characteristic function of the supremum and the
infimum of a Lévy process;

Bibliography
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“Wiener-Hopf Monte Carlo”

Kuznetsov et al. (2011) suggest a technique for simulating the joint
law of the position and running maximum (minimum) at a fixed time
of a general Lévy process. The WHMC-method

e is based on WH-factorization, stationarity and independence of
Lévy process increments;

@ uses time randomization;
e can be applied only if explicit formulas for WH-factors are known.

v

Bibliography
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The WHMC-method
Theorem 1, Kuznetsov et al (2011)
Set g =n/T. Let {S/:j>1} and {l) : j > 1} be i.i.d. sequences of
random variables with common distribution equal to that of 77@ and
KT(q), resp. Then, for all n € N,
d n n
(Xl'(n,q)7 Kr(n,q)) = (Vq 9 Jq)7
where, for any k € N, and setting V := 0 and J) := 0 we define
Vo =Ve '+ (Sq 1), Jg=min{Th Ve + 0y
Application

F(n,n/T)— T, n— +o0
(Xr(n,n/T)vKr(n,n/T)) — (X1, X7),

a.S.

n— +00 a.s

4
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The problem for exotic options

We consider options, whose payoff at maturity date T depends on
(XTv KT)

Consider
V(T,x) = EX[g(X1,X7)],
where

time 0 is the beginning of a period under consideration,
T — the final date,

g(X7, X+) — the payoff at time T.
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Time randomization and Laplace transform

Laplace transform

V(g,x) = /0+ooe_"tEX[g(Xt,Kt)]dt

— E{/ equ(x+Xt,x+L)dt]
0

= g 'E[g(x + X7, x+ X7,)]
= q 'E[g(x+ X7, + X7, x+ X1l

(=1)" 'q" n—1 o q" e n—1_—qt =x
it e = m/o £ Le T EX [g(X,, X,)] dt

= E[g(X + Xr(n,q)a X+ Kr(n,q))]'

o
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Numerical Laplace transform inversion

Post-Widder formula

If £(7) is a function of a nonnegative real variable 7 and the Laplace
transform f(\) = [ e=*"f(7) d7 is known, the approximate
Post-Widder formula for f(7) can be written as

f(r) = Jim fu(r)s ur) o= G (ﬂ) o (1),

T T

where F(M()\) = Nth derivative of the Laplace transform £ at A. The
convergence fy(7) to f(7) as N — oo is slow (of order N—1)

Barrier options in Lévy models, Post-Widder formula

KUDRYAVTSEV, O., “An efficient numerical method to solve a
special class of integro-differential equations relating to the Levy
models’ // Mathematical Models and Computer Simulations, 2011,
V.3., N.6., pp. 706-711.
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Numerical Laplace transform inversion: the Gaver-Stehfest
algorithm

An approximate formula for f(7) can be written as follows

1 o
—Zwk-f(—k), 0<7 < o0,
Tk:l T

N = 2n;
Qp = kln(2)
min{k,n}
(—1)"*In(2) PP
Wk = a0 Z J+1C}’1C§qu 7
J=l(k+1)/2)]
where [x] — integer part x u Cf¢ m binomial coefficients.

v
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Approximate Wiener-Hopf factorization

The Fast Wiener-Hopf factorization method (FWHF-method)

o In Kudryavtsev and Levendorskii (2009) the fast, accurate and
universal numerical method for pricing barrier option under Lévy
models was developed.

o In Kudryavtsev (2016) the approximate factorization was
generalized; convergence of the method was accelerated.

Reference

KUDRYAVTSEV, O.E., AND S.Z. LEVENDORSKII, “Fast and
accurate pricing of barrier options under Levy processes”, J. Finance
and Stochastics, 2009, V. 13, N. 4, 531-562

KUDRYAVTSEV O. Advantages of the Laplace transform approach in
pricing first touch digital options in Lévy-driven models. Boletin de la
Sociedad Matematica Mexicana, 2016, vol. 22(2), pp. 711-731.
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Laplace transform of cdf functions

WH method
o Denote by Fi(x, T) the cdf for X7 and X
o Apply Laplace transform to F,(—x, T), x < 0:

A

+o0o _
Fi(x,q) = /0 e " EX[1(_oo0)(Xe)] dt
= ¢ E[1(an)(x+ X7,)]

e Apply Laplace transform to F_(—x, T), x > 0:

A

+oo
F(x.q) = /0 e EX 1o 0)(X,)] dt
= qflE[l(_oo’o)(X-i-KTq)]
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A generalization of the WHMC-method

Key ideas

e Approximate Wiener-Hopf factors gzﬁ?(f) by using the FFT for
real-valued functions.

e Apply the Laplace transform to Fi(—x, T)
e Find at g specified by the Gaver-Stehfest algorithm:

ﬁ+(X, q) = q_1€+1(—oo,0)(x) 'E—(X7 q) = q_lg_l(—oo,O)(X)-

o Cdf F.(x) can be recovered from Fy(—x, q) by the
Gaver-Stehfest algorithm.

o If the cdf Fx is known then one may simulate X by using samples
from F,'(U), where U is a uniform distribution on (0, 1).

v
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Approximate Wiener-Hopf factorization

A new formula for ¢ (&)

Let a Lévy process X; belongs to the class RLPE. Then there exists a
constant w_ < 0 such that ¢ (&) admits analytical continuation into
half-plane Im ¢ > w_ and can be represented as follows:

61(6) = e [i0™(0) — £67(¢))|,

¢+(x) = 1(—00,0](X)(27T)_1/ 00+iw— efX”MdU;

2
—oo+iw— n

o) = / +Ooe—fxéqﬁ(x)dx.

o0

The FFT-based computation of ¢ (&) requires O(MIn M)
operations, where M is a number of points for numerical integration

v
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Approximate Wiener-Hopf factorization

A new formula for ¢ ()

Let a Lévy process X; belongs to the class RLPE. Then there exists a
constant w, > 0, such that ¢, (§) admits analytical continuation into
half-plane Im ¢ < w, and can be represented as follows:

07(6) = e [—i5¢-(0) - 526—(5)}

- +oo+iws ,X |n +
—oo+tiwy

——————dn;

b() = / o ()

The FFT-based computation of ¢, () requires O(MIn M)
operations, where M is a number of points for numerical integration

v
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Risk measures

Risk measures as option prices

The key quantity of interest is the joint law of the current position
and the running extrema of a Lévy process at a fixed time. The
problem is closely related to pricing exotic options.

llliquidity as an option
According to Longstaff (1995), an expected difference between the

maximal stock price over the period and the price in the end of the
period gives an upper bound for the value of the stock illiquidity.

llliquidity as a lookback option

Consider an investor who cannot buy (sell) a stock during a certain
time period. A floating strike European lookback call (put) gives the
option holder the right to buy (sell) an asset at its lowest (highest)
price during the life of the option.
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llliquidity as a lookback option
REPO (repurchase agreement)

In a repo, one party sells an asset (usually fixed-income securities) to
another party at one price at the start of the transaction and commits
to repurchase the fungible assets from the second party at a different
price at a future date or (in the case of an open repo) on demand.

If the seller defaults during the life of the repo, the buyer (as the new
owner) can sell the asset to a third party to offset his loss. The asset

therefore acts as collateral and mitigates the credit risk that the buyer
has on the seller.

During the life of the repo, the asset becomes illiquid for the seller.

REPO operations are typically short-term. As an illiquidity risk was

estimated before a repo, an investor should dynamically monitor the
risk observing the asset prices.
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Lookback options: floating strike
European floating strike lookback put
V(T,x) = EX[e"T(SeXT — SeXT)],

Seasoned European floating strike lookback put

V(Ty, To; x, h) = Er, [e (2" T)(SeX2 — SeX72)| Xy, = x, X, = h].
Set T=T,— T;.
V(T,x) = EX[eTS(emxXrht _ Xry]
= Ex[e_’TS(e)_(T — )] +
= EX[e”"T(H- SexT)l{XKh}}.

H(= Se") — predefined maximum, EX[e~"TeXT] = e*.
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Lookback options: fixed strike
European fixed strike lookback put

V(T,x) = EX[e”T (K — Ke*T),],

Seasoned European fixed strike lookback put

V(T]_, TQ;X, h) _ E_,_1 [e—r(Tz—Tl)(K _ KGKT2)+|XT1 = X,KTI = h]
Set T = T2 — T]_.

V(T,x) = EX[e”T(K — KemXrhh) |
= EX[e"T(K — KeXT),] +

= EX|e”T((H— KeXT); — (K — Ke*XT): ) 1ix, oy |-

H(= Ke") — predefined minimum

v
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Numerical examples

gAWHF&MC-method

The algorithm of the generalized approximate Wiener-Hopf
factorization Monte Carlo method was published in
Kudryavtsev O.E.(2019). We will refer to it as gAWHF&MC-method.

Bibliography

KUDRYAVTSEV, O.E., “Approximate Wiener—Hopf factorization and
Monte Carlo methods for Lévy processes’, Theory Probab. Appl.,
2019, Vol. 64, No. 2, to appear
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Numerical examples

We check the performance of the gAWHF&MC-method against prices
obtained by deterministic methods: the FWHF&GS-method from
Kudryavtsev O., Levendorskii S. (2011) and the ParaiLT-method from
Boyarchenko S. I., Levendorskii S. Z.(2013).

Bibliography

KUDRYAVTSEV, O.E., AND S.Z. LEVENDORSKII, “Efficient pricing
options with barrier and lookback features under Levy processes”,
Working paper, 2011, 29 pp. Available at SSRN.

BOYARCHENKO S. I., LEVENDORSKII S. Z. “Efficient Laplace
inversion, Wiener-Hopf factorization and pricing lookbacks”,
International Journal of Theoretical and Applied Finance, 2013, vol.
16(3), 1350011.
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Experiment setup

We consider European fixed strike lookback put options under the
TSL model, and use the same parameters of the KoBoL (CGMY)
process as in Boyarchenko S. I., Levendorskii S. Z.(2013)://
c=0.2395 A\, =3.0, \_ =-10.0, » =12 (C =0.2395, G = 3.0,
M =10.0, Y = 1.2 in CGMY parametrization).

The remaining parameters are strike price K = 100, the dividend rate
d = 0 and interest rate r = 0.04. The drift parameter p is fixed by
EMM-requirement. We consider 2 maturities T = 0.1 (short) and

T =2 (long).

The computations performed in 10 points
xx = In(§/K)(= 0.02;0.04; ...;0.2), where S — initial spot price.

PC characteristics: Intel Core(TM)i5 CPU, 1.7GHz, 4 GB RAM,
Windows 7 Professional with 64-bit
Udine, 16/05/2019 34 / 39




Numerical examples

European lookbacks

For verification of the accuracy of our method, we calculate prices for
the fixed strike lookback put by using the gAWHF&MC-method, the
FWHF&GS-method from the ParailLT-method.

The prices of the FWHF&GS-method were obtained using the code
implemented into the program platform Premia (www.premia.fr).

The prices of the ParaiLT-method were taken from the table 3
Boyarchenko S. I., Levendorskii S. Z.(2013), as well as the
benchmarks.

gAWHF&MC-prices converge very fast and agree with the
benchmarks. All the methods are in agreement. gAWHF&MC-method
for pricing lookback options could be considered as a competitor to
the deterministic methods.
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Convergence of gAWHF&MC

Fixed strike lookback put prices and MC-errors. Short maturity
Parameters h=0.001, N = 10% h =0.001, N = 10° h =0.001, N = 10°
x = In(S/K) price error price error price error
0.02 5.34748 0.147 5.38840 0.046 5.39141 0.015
0.04 4.21819 0.140 4.25655 0.044 4.26282 0.014
0.06 3.34641 0.132 3.37984 0.042 3.38694 0.013
0.08 2.67288 0.123 2.69821 0.039 2.70609 0.012
0.2 0.81726 0.079 0.81431 0.025 0.81986 0.008
Parameters h =0.0005, N =10% | h=0.0005 N=10° | h=0.0005 N = 10°
x = In(S/K) price error price error price error
0.02 5.33876 0.147 5.37970 0.046 5.38274 0.015
0.04 4.21152 0.140 4.24982 0.044 4.25610 0.014
0.06 3.34122 0.132 3.37463 0.042 3.38172 0.013
0.08 2.66890 0.123 2.69414 0.039 2.70203 0.012
0.2 0.81631 0.079 0.81333 0.025 0.81888 0.008
Parameters h=0.0001, N =10% [ h=0.0001, N=10° [ h=0.0001, N = 10°
x = In(S/K) price error price error price error
0.02 5.33171 0.147 5.37264 0.046 5.37571 0.015
0.04 4.20611 0.140 4.24435 0.044 4.25064 0.014
0.06 3.33699 0.132 3.37037 0.042 3.37745 0.013
0.08 2.66565 0.123 2.69079 0.039 2.69869 0.012
0.2 0.81547 0.079 0.81246 0.025 0.81801 0.008
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Convergence of gAWHF&MC

Fixed strike lookback put prices and MC-errors.

Long maturity

Parameters h =0.001, N = 10° h =0.001, N = 10° h =0.001, N = 107
x = In(S/K) price error price error price error
0.02 28.29943 0.125 28.27669 0.040 28.26846 0.013
0.04 27.15904 0.126 27.13597 0.040 27.12789 0.013
0.06 26.05742 0.127 26.03453 0.040 26.02668 0.013
0.08 24.99020 0.128 24.96794 0.040 24.96014 0.013
0.2 19.22577 0.125 19.21361 0.040 19.20667 0.013
Parameters h =0.0005, N =10° | h=0.0005 N =10° | h=0.0005 N =10
x = In(S/K) price error price error price error
0.02 28.29156 0.125 28.26881 0.040 28.26058 0.013
0.04 27.15145 0.126 27.12838 0.040 27.12031 0.013
0.06 26.05008 0.127 26.02719 0.040 26.01934 0.013
0.08 24.98308 0.128 24.96082 0.040 24.95302 0.013
0.2 19.21983 0.125 19.20769 0.040 19.20075 0.013
Parameters h=10.0001, N=10° | h=0.0001, N=10° | h=0.0001, N =107
x = In(S/K) price error price error price error
0.02 28.28453 0.125 28.26178 0.040 28.25354 0.013
0.04 27.14467 0.126 27.12160 0.040 27.11352 0.013
0.06 26.04351 0.127 26.02061 0.040 26.01277 0.013
0.08 24.97671 0.128 24.95444 0.040 24.94665 0.013
0.2 19.21448 0.125 19.20235 0.040 19.19541 0.013
.
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Comparison of gAWHF&MC with deterministic methods

Errors. Short maturity

X 0.02 0.04 0.06 0.08 S 0.20 Time
Veut 5.37205 4.24803 3.37586 2.69765 S 0.81512 400-1900
Para iLT

e=E-01 -0.053 -0.038 -0.028 -0.014 o 0.0064 0.03-0.15
e=E-02 -0.0054 -0.0041 -0.0032 -0.0025 o -0.0007 0.55-1.49
FWHF&GS7

h = 0.001 0.00669 0.00633 0.00546 0.00447 aoa 0.00094 0.078

h = 0.0005 0.00352 0.00326 0.00276 0.00223 aoa 0.00043 0.188

h = 0.0002 0.00124 0.00111 0.00091 0.00072 s00 0.00009 0.39
gAWHF&MC

h = 0.001

N = 10% -0.0246 -0.02984 -0.02945 -0.02478 800 0.00215 0.156

N = 10® 0.0164 0.00852 0.00398 0.00055 500 -0.00081 0.1880

N = 10° 0.0194 0.01479 0.01108 0.00843 500 0.00474 0.797

h = 0.0005

N = 10* -0.0333 -0.03650 -0.03464 -0.02875 300 0.00120 0.266

N = 10°® 0.0077 0.00180 -0.00123 -0.00352 o -0.00178 0.328

N = 10° 0.0107 0.00808 0.00586 0.00438 500 0.00377 0.906

h = 0.0001

N = 10* -0.0403 -0.04191 -0.03887 -0.03201 300 0.00036 1.125

N = 10°® 0.0006 -0.00367 -0.00548 -0.00686 a00 -0.00266 1.172

N = 10° 0.0037 0.00262 0.00160 0.00104 pog 0.00289 1.813
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Comparison of gAWHF&MC with deterministic methods

Errors. Long maturity
X 0.02 0.04 0.06 0.08 S 0.20 Time
Vgut 28.25454 27.11439 26.01360 24.94750 S 19.19671 873-2762
Para iLT
e=E-03 -0.068 -0.062 -0.057 -0.052 L. -0.029 0.23-1.13
e=E-04 -0.0043 -0.0058 -0.0060 -0.0057 can -0.0033 1.36-5.1
FWHF&GS7
h = 0.001 0.02686 0.02731 0.02770 0.02790 500 0.0281 0.093
h = 0.0005 0.01266 0.01291 0.01300 0.01310 500 0.0132 0.187
h = 0.0002 0.00196 0.00221 0.00230 0.00250 BoD 0.0030 0.359
gAWHF&MC
h = 0.001
N = 10°® 0.0449 0.0446 0.0438 0.0427 600 0.0291 0.218
N = 10° 0.0222 0.0216 0.0209 0.0204 500 0.0169 1.062
N = 107 0.0139 0.0135 0.0131 0.0126 600 0.0100 7.59
h = 0.0005
N = 10°® 0.0370 0.0371 0.0365 0.0356 500 0.0231 0.359
N = 10° 0.0143 0.0140 0.0136 0.0133 500 0.0110 1.062
N =107 0.0060 0.0059 0.0057 0.0055 ooo 0.0040 7.98
h = 0.0001
N = 10°® 0.0300 0.0303 0.0299 0.0292 500 0.0178 1.156
N = 10° 0.0072 0.0072 0.0070 0.0069 500 0.0056 1.859
N = 107 -0.0010 -0.0009 -0.0008 -0.0009 500 -0.0013 9.53
v
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